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A new Gaussian quadrature procedure is developed for integrals of the form 
!Ze -y>PF( y) dy for p = O? 1 and 2. Recursion relations are derived for the coefftcients in the 
general three term recurrence relation for the polynomials whose roots are the quadrature 
abscissae. A comparison with the Gauss-Laguerre quadrature procedure is presented. 
Solutions of the chemical kinetic Boltzmann equation are obtained with a discrete ordinate 
method based on this Gaussian quadrature procedure. The results are compared with previous 
solutions obtained with a polynomial expansion method. 

1. INTRODUCTION 

Kinetic theory problems invariably involve the evaluation of averages over a 
Maxwellian distribution function, p”. Specifically, if F(c) is some function of speed c, 
the equilibrium average of F is 

F= 
I 

p”(c) F(c) dc 

=$Y? -‘*Y’F( y) dy, 

(1) 

where p”(c) = (m/2rkT)“’ exp(-mc2/2kT), m is the mass, and y = (m/2kT)“‘c is the 
dimensionless speed. The present paper is concerned with the development of a 
Gaussian quadrature procedure for integrals of the type in Eq. (l), and their 
application to a solution of the Boltzmann equation (BE). 

For integration over the half-infinite range, primitive integration algorithms such as 
the trapezoidal rule, or Simpson’s rule are not very efficient since in order to attain 
convergence the integrations typically must be carried out to large y. A 
Gauss-Laguerre quadrature procedure could be employed if a change of variable to 
reduced energy x = y2 is made. The integration in Eq. (1) is then 

F=-$? -’ +F(fi) dx. (2) 
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This quadrature is based on abscissae which correspond to the roots of Laguerre 
polynomials, orthogonal on the interval [0, co] with weight function eeX. However, 
the natural weight function to use for integrals of the type in Eqs. (1) and (2) is 
eWy2y2 (or epX 6). Moreover, the integrands, F, that arise in kinetic theory are 
typically functions of the reduced speed y rather than the reduced energy, x, as 
discussed later in this paper. 

Consequently, it would appear that a quadrature procedure based on abscissae 
which correspond to the roots of polynomials orthogonal on the interval [0, co] with 
weight function e -yzy2 would be better suited to kinetic theory problems. Such 
polynomials have been introduced in a previous paper [ 1 ] in connection with the 
calculation of eigenvalues of the Lorentz-Fokker-Planck equation. These 
polynomials were also considered by Copic and Petrisic [2] who suggested they be 
called Maxwell polynomials. 

In the present paper, the calculation of abscissae and weights for integrals over the 
interval [O, co] with the generalized weight function eey’yp, p = 0, 1 and 2, is 
considered. The case p = 2 is of particular interest in kinetic theory and has been 
reported earlier in an unpublished report [2]. Several other researchers [3-61, have 
performed calculations for the case p = 0. Some aspects of the procedures for 
generating abscissae and weights employed in this paper are new. For the cases p = 0 
and 2, comparisons are made with the limited results reported earlier. General 
schemes for calculating Gaussian quadrature abscissae and weights have been 
discussed by other workers [7,8]. 

The present paper also considers the application of this quadrature procedure to a 
solution of the BE for the velocity distribution function (VDF). The method most 
often employed in the solution of the BE is a moment method which involves the 
expansion of the VDF in terms of a set of polynomials which are generally either 
Laguerre (Sonine) or Hermite polynomials. A second method involves the 
replacement of the integration in the integral equation with an approximate numerical 
algorithm. In this method, referred to as the discrete ordinate method, the VDF is 
evaluated at a set of discrete points. Both methods of solution reduce the BE to a set 
of linear algebraic equations for the expansion coefficients in the polynomial method 
and for the VDF at a set of points in the discrete ordinate method. 

The discrete ordinate method, has been employed in the study of Couette flow 
[9, lo], in hot atom systems [ 11, 121, in the dynamics of stellar evolution [ 131 and in 
several applications to atmospheric problems [ 14-161. One advantage of this method 
of solution is that matrix elements of the kernel are not required. Rather, the kernel in 
the integral equation must be calculated which can be done even for realistic collision 
models. A change in the set of points is a trivial matter whereas a change in the 
polynomial basis functions is a major modification in the moment method since 
matrix elements must be reevaluated. For certain types of polynomials, such as those 
introduced in this paper, this calculation can be a formidable problem since the 
polynomials are not classical and the mathematical machinery, such as a generating 
function, which might facilitate the calculation of matrix elements [ 171, does not 
exist. 
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The present paper considers a discrete ordinate method of solution of the BE in 
connection with a nonequilibrium model reactive system introduced in an earlier 
paper [ 181. The earlier paper employed an expansion of the VDF in Laguerre 
polynomials and for some situations many terms in this expansion are required. 
Consequently, matrix elements of the Boltzmann collision operator of rather high 
order need to be calculated. Although general methods for the evaluation of these 
matrix elements have been developed [ 171, the numerical calculation of the higher 
order matrix elements is subject to round-off errors. Consequently the polynomial 
method can become inefficient for such problems and the discrete ordinate method 
might be preferred. The present paper considers a detailed comparison of these two 
methods of solution of the CE. In subsequent papers, application of the discrete 
ordinate method to particular hot atom problems [ 19,201 will be considered. 

Section 2 presents a discussion of the calculation of the coefficients in the general 
three term recurrence formula for the polynomials. The method of the evaluation of 
the weights and points is described in Section 3. Section 4 involves a comparison of 
the derived quadrature formulae with the Gauss-Laguerre quadrature formula. The 
application to a solution of the BE is given in Section 5. 

2. POLYNOMIAL RECURRENCE RELATION 

The set of polynomials Qf’ orthogonal on the interval (0, co] with weight function 
w(y) = e-“‘yP is considered. These polynomials satisfy a general three term 
recurrence formula of the type [21,22], 

with Q$” = 1 and Qy’= y - ZJi(p + 2)]/{2r[i(p + l)]}“’ for the particular set 
considered here. The calculation of the quadrature abscissae and weights is based on 
the coefficients a$” and /?f’ in Eq. (3a) and it is their calculation which presents the 
principal difficulty. 

The polynomials generated by Eq. (3a) are not normalized. The corresponding 
normalized polynomials Bf’ = Q f’ /@ satisfy the recurrence relation 

YBn = dL4.1 +a,?, + I/%%,, (3b) 

where the normalization factors are given by 

(P) = m e-Y* 
Yn 

J 
f(Q:‘>’ dy 

= ;Q!?,. 
(4) 
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where the symbol ( ) denotes the integration over y with weight function w(y) and 
will be referred to as the average over y. The coefficients /I$‘) in Eq. (3) are related to 
yf” as given by [21]: 

The c@’ quantities are the moments with the normalized polynomials, given by 

c+’ = (yBy). (6) 

If the polynomials are generated with a Schmidt orthogonalization procedure [ 23 1, 
the normalization factors yp’ are found to become increasingly small as n increases. 
The calculation very rapidly fails due to the accumulation of round-off errors. An 
alternate procedure based on recurrence relations was developed by Steen et al. [3] 
and was valid only for p = 0. 

In the present paper, three separate recurrence relations are derived for @’ and 
/?jp). The derivations are based on the Christoffel-Darboux identity [ 2 1,221 given by 

By’2 = m [B,@:; Br’ - Bn”l, B$“‘]. 
k=O 

If Eq. (7) is multiplied by VW(Y) and integrated, one finds that 

5 aif’ = m (Y%‘:‘~ Bi”) 
k=O 

= 2 v?%% (Y’%‘: 1 Bf’L 

(7) 

where an integration by parts has been performed on the integral (yBf’i’, B)P’). It is 
useful to point out that the integral (yBfj, B$“) = 0 since yB!f”, a polynomial of 
degree n, is orthogonal to Bf’i 1. With repeated use of Eq. (3) and the orthogonality 
condition 

w(y) Bf’B;’ dy = d,,, 

one finds that, 

(9) 
k=O 

Equation (9) gives pip! I in terms of the lower order aj,!” coefficients and is not subject 
to round-off errors. However, Eq. (9) must be supplemented with a second relation 
which gives af” up to k = n + 1. 

If Eq. (3) is squared and averaged, one gets that, 

( yZBLp)‘) = ,f3~p~ 1 + afj2 + pf’. (10) 
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The left hand side of Eq. (10) can be evaluated as follows. The average of Eq. (7) 
gives, 

(n + 1) = m(B(P:‘* BY) 

= (yBf1, B@") n+1 3 (11) 

where the second equality results from the average of Eq. (3) with n replaced by 
n + 1 after multiplication by Bfi;. An integration by parts yields, 

(y~p~jp)')=--(p+ 1)/2 +(y2Brj2) (12) 

so that with Eq. (1 1 ), one finds that 

(y2B~'*)=rz + (p + 1)/2. (13) 

With Eq. (13) in Eq. (lo), one finds that 

/If:, + ap* +/p=n+(p+1)/2. (14) 

Equation (14) can be combined with Eq. (9) to give a recurrence relation for a?’ 
given by, 

With Eq. (9) the term @” that appears in Eq. (15) can be written in terms of ap’ 
up to order n so that Eq. (15) is essentially a recurrence relation for a,@’ alone. 

A third recurrence relation can be derived by multiplying Eq. (7) by JJ’ and 
averaging. With Eq. (13), one gets the result, 

+(n + l)(n + p+ l)= a[(y'Bf:; Bf')-(y'B,@:,B:)')]. (16) 

With an integration by parts for (y'B!f"', BF)), one has that, 

(n+ I)@+P+ l)=4~[(y3B,@:,BIP')--l(p+2)(~~B,@,B,@') 

- (y2Bf;, Bf")]. 

Use of Eqs. (3) and (11) yields, 

(~'B',~:,BIP")=~~(BIP)'BIP~,) 

=&Z. 

(17) 

The two remaining integrals in Eq. (17) are evaluated with repeated use of Eq. (3). 
The final result is, 

(n+ l)(n+p+ 1)=4PIP:,[a~‘(alp’+a~~~)+Pn@‘+~]. (18) 
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TABLE1 

Starting Values of cz)P’ 

P (PI 
a0 

(PI a, 

0 J- 2 

fi (n - 2) J;; 
fi v% 2) - 1 
2 2(4 -n) 

2 -E 
4(4 - 77) 

fi fi(3x - 8) 

Equations (9), (14) and (18) are the desired results. Various combinations of these 
three recurrence relations gave algorithms for which round-off errors accumulated 
rapidly. However, since these recurrence relations are algebraically very simple, a 
computer program was written which employed multiple precision arithmetic 
subroutines for which arithmetic operations could be performed to any preassigned 
number of significant figures. Equations (9) and (15) were used in these calculations 
which require the first two values of ak U) listed in Table I. The quantities a:’ and @” 
for p = 0, 1 and 2 could be calculated to almost any order n. Essentially one 
significant figure is lost with each iteration. For p = 0 and 1, calculations were 
carried out to order n = 20. In this calculation 43 significant figures were retained. 
For the case p = 2, required for application to a solution of the BE, these coefftcients 
were evaluated up to n = 100. In this calculation, 133 significant figures were 
retained. This calculation of a:’ and /If’ for p = 2 and n up to 100 required only 
several seconds of computer time. For p = 0, the values of these coefficients were in 
agreement (to 15 significant figures) with those listed by Galant [4], which do not go 
beyond n = 20. 

The procedures developed in this paper for the calculation of the coefficients in the 
general three term recurrence relation, Eq. (3), work extremely well. The methods 
employed in the derivation of the recurrence relations, Eqs. (9), (14) and (18), are 
applicable to non-integer values of p, and other intervals and weight functions, 
provided that the various integrals exist and the integration by parts can be carried 
out. 

3. CALCULATION OF ABSCISSAE AND WEIGHTS 

The Nth order Gaussian quadrature formula is of the form 

I 
02 

0 

e--“‘f-f(y) dy = lgl W@).f(Yjp)), (19) 
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TABLE IIa 

Quadrature Abscissae and Weights; w(y) = eey2 

N=2 0.3001939310608394(0) 
0.1252421045333717(+1) 

N=4 0.1337764469960676(O) 
0.6243246901871900(0) 
0.1342537825644992(+1) 
0.2262664477010362(+1) 

N=8 0.5297864393185113(-l) 
0.2673983721677653(O) 
0.6163028841823999(O) 
0.1064246312116224(+1) 
0.1588855862270055(+1) 
0.2183921153095858(+1) 
0.2863133883708075(+1) 
0.3686007162724397(+1) 

N= 16 0.1975365846007727(-l) 
0.1028022452379175(O) 
0,2473976694524551(O) 
0,4466962259616832(O) 
0.6930737203019995(O) 
0.9794041703307299(0) 
0.1299789321277036(+1) 
0.1649854240397434(+1) 
0.2026808152168867(+1) 
0.2429450491602143(+1) 
0.2858266528543266(+1) 
0.3315769275038698(+1) 
0.3807377116755898(+1) 
0.4343606345470172(+1) 
0.4946377204048386(+1) 
0.5675017934041922(+1) 

0.6405291796843786(O) 
0.2456977457683793(O) 

0,3253029997569190(O) 
0.4211071018520622(0) 
0.1334425003575195(0) 
0.6374323486257276(-2) 

0.1341091884533595(0) 
0.2683307544726388(O) 
0.2759533979884218(O) 
0.1574482826187903(O) 
0.4481410991746290(-l) 
0.5367935756025333(-2) 
0.2020636491324107(-3) 
0.1192596926595344(-5) 

0.5052463202137790(-l) 
0.1136085568941510(0) 
0.1629212923145450(0) 
0.1835628011162462(0) 
0.1654386377556098(O) 
0.1165724905535033(O) 
0.6199969609915657(-l) 
0.2391970961868355(-l) 
0.6409914424050132(-2) 
0.1135695310688778(-2) 
0.1252862213295624(-3) 
0.7950495719622457(-5) 
0.2590007619415064(-6) 
0.3611549139742782(-S) 
0.1537677916189839(-IO) 
0.8674204452494624(-14) 

where $” are the N roots of the polynomial B$“(y) and WY) are the corresponding 
weights. The abscissae J)(P) I were calculated by diagonalizing the tri-diagonal matrix 

J= Jik 
I: 0 

0 

m 
$3 

0 0 

. . . 

. . . 

. . . 

. . . 
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TABLE IIb 

Quadrature Abscissae and Weights; w(y) = emy*y 

Yi 

N=2 0.5466400565221693(O) 
0.1518176674506265(+1) 

N=4 0.2800995401403832(O) 
0.83207706S8174104(0) 
0.1556389870300421(+1) 
0.2463284959722103(+1) 

N=8 0.1218127678061463(O) 
0.3882449491473571(O) 
0.765 1497067658092(O) 
0.1224690624761160(+1) 
0.1751398297664409(+1) 
0.2343383197810315(+1) 
0.3016608849956826(+1) 
0.3831371300820741(+1) 

N= 16 0,4775799543737674(-l) 
0.1575643611266753(O) 
0,3236556568455920(O) 
0,5391473546675038(O) 
0.7970053979972014(0) 
0.1090958307363892(+1) 
0.1415975970714936(+1) 
0.1768437030466615(+1) 
0.2146149962010079(+1) 
0.2548365652625752(+1) 
0.2975896592510777(+1) 
0.343 1483868308089(+ 1) 
0.3920694119664905(+1) 
0.4454120573510955(+1) 
0.5053674269642785(+1) 
0.5778478847939104(+1) 

W, 

0.3252320794479061(O) 
0.1747679205520937(O) 

0.1139990543365298(O) 
0.2692323797 13497 l(0) 
0.1107889566826584(O) 
0.59796092673 14704(-2 

0.2397877317765308(-l 
0.10925068 19 189940(O) 
0.1797622678433810(O) 
0.1351751653621029(O) 
0.4552181928573556(-l 
0.6064921853788935(-2 ,I 
0.2448536436477049(-3) 
0.1516914696753451(-5) 

0.3795307814831678(-2) 
0.2136808301992049(-I) 
0.5595857089379011(-1) 
0,9587168277747507(-I) 
0.1169082070371872(0) 
0.1029363012162623(O) 
0.64682467 16393942(-l ) 
0.2831911613754905(-l) 
0.8362647991652432(-2) 
0.1597736202726321(-2) 
0.1870134647150351(-3) 
0.1243935496206526(-4) 
0.4208466925294357(-6) 
0.6051847030054333(-8) 
0.2643406562982473(-10) 
0.1524594098604790(-13) 

as described elsewhere [22]. The corresponding weights are given in terms of the first 
component, qor of the ith normalized eigenvector of J, that is, 

‘&o - I - m’P’q$, 

where rn@) = lr eey2yP dy. Th e results of these calculations are shown in Table II for 
p = 0, 1 and 2, and orders N= 2,4, 8 and 16. For each set of the points, the 
monomial integrals 

e-"'y"y" dy = + I- 
r+,.7 
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TABLE IIc 

Quadrature Abscissae and Weights; w(y) = e-y’y* 

Y, 
- 

N=2 0,7539869079898871(O) 
0.1734055298879163(+1) 

N=4 0.4238628193900528(O) 
0.1014332104566760(t1) 
0.1742437375162050(+1) 
0.2639813333635586(tl) 

N = 8 0.1990000637984294(O) 
0.5059526450205794(O) 
0.9041682182040568(0) 
0.1372615723971598(+1) 
O.l900969572329702(tl) 
0.2490479841967435(+1) 
0.3158780677105240(+1) 
0.3966720403265353(+1) 

N= 16 0.8174913389984520(-l) 
0.2 15476 1962759740(O) 
0.40035305 17087630(O) 
0.6298538771405607(O) 
0.8976124329697087(O) 
0.1198149260240153(+1) 
0.1527188184719962(+1) 
0.1881745606015598(+1) 
0.2260132964654088(+1) 
0.2661980315279350(tl) 
0.3088376381635592(+1) 
0.3542256017930265(+1) 
0.4029312272760483(+1) 
0.4560203031431090(+1) 
0.5156826768007481(+1) 
0.58781144889155572(+1) 

wi 

0,2738413467266824(O) 
0.1692721159996965(O) 

0,7649092266787873(-l) 
0,2435439494642453(O) 
0.1162953035510695(O) 
0.6783287043185401(-2) 

0.9599144336400067(-2) 
0.7072944976303661(-l) 
0.157366887003943 l(0) 
0.1429322724003870(O) 
0.5431444004253597(-l) 
0.7835224153141577(-2) 
0.3338952597020048(-3) 
0.2149767232664775(-5) 

0.7050727473210895(-3) 
0.7107111654073120(-2) 
0.2844188515941899(-l) 
0.6660235171398239(--l) 
0.1025785712747278(O) 
0.1077502032531791(O) 
0.7747156370638879(-l) 
0.3763106373385135(-l) 
0.1204873635560290(-l) 
0.2453208613776865(-2) 
0.3020309847850189(-3) 
0.2092121075871870(-4) 
0.7314637349679360(-6) 
0.1080646863902574(-7) 
0.4828081616137754(-10) 
0.2840126937112534(-13) 

were calculated for n = 0 to n = 2N, and were in agreement with the above result to 
the accuracy of the abscissae and weights in Table II. For the case p = 2, the results 
for N = 2,4 and 8 agree with those in [2] to their stated accuracy of 7-8 significant 
figures. Whereas these earlier calculations fail beyond N = 13, in the present work 
abscissae and weights up to N= 100 were evaluated for use in subsequent 
applications; (see Section 5). For case p = 0, the present results shown in Table IIa 
agree with the results obtained by other workers [3,4,6]. The results of Huang and 
Giddens are correct to only 3-4 significant figures. 
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4. COMPARISON OF QUADRATURE FORMULAE 

It is of considerable interest to compare the newly derived quadrature procedure 
with the Gauss-Laguerre formula, of the form 

I om e-“f(x) dX N 5 Vjf(Xi), 
i=l 

where xi and vi are the abscissae and weights, respectively, and are tabulated. Many 
different types of integrals which could be calculated analytically were integrated 
with the formula above and also with Eq. (19). The results for two integrals are 
discussed here which demonstrate the usefulness of the new quadrature formulae. The 
first integral is 

I,(y) = jm x2e-Yx2-x dx 
0 

= IdG(l + l/W ewWW erfcWdi3 - 1 l/4?’ 

TABLE III 

Comparison of Quadrature Formulae: Z,(y) 

N Laguerre p=o p=l p=2 

y = 0.02, exact value = 1.62632 

2 1.64296 
4 1.62592 
8 1.62632 

y = 0.10, exact value = 0.96 178 

2 0.81513 
4 0.96744 
8 0.96182 

16 0.96178 

y = 1.0 exact value = 0.15923 

2 0.17326 
4 0.16502 
8 0.16140 

16 0.16002 
32 0.15923 

y = 10 exact value = 0.99164(-2) 

2 1.04941(-2) 
4 1.01200(-2) 
8 0.99883(-2) 

16 0.99418(-2) 
32 0.99287(-2) 

1.44464 1.72768 1.74032 
1.61808 1.62408 1.62712 
1.62632 1.62632 1.62632 

1.15062 1.14917 0.94200 
0.97484 0.98157 0.9603 I 
0.96202 0.96196 0.96168 
0.96178 0.96178 0.96178 

0.15290 
0.15922 
0.15923 

0.98616(-2) 0.99210(-2) 0.99160(-2) 
0.99164(-2) 0.99164(-2) 0.99164(-2) 

0.16105 0.15763 
0.15923 0.15923 
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TABLE IV 

A comparison of Quadrature Formulae: Z,~J) 

N Laguerre p=2 Laguerre p=2 

2 23.6105 22.6495 8.40107 
4 22.9827 8.17994 
8 22.7664 8.10358 

16 22.6907 8.07682 

Exact values 22.6495 

y= l/512 y = l/64 

8.06226 

8.06226 

2 1.44641 1.41334 1.06248 
4 1.41421 1.41421 1.06066 
8 1.41919 1.06179 

16 1.41600 1.06120 

Exact value 1.41421 

2 
4 
8 

16 

y= 128 

1.00390 1.00360 
1.00390 1.00383 

1.00389 
1.00390 

1.00098 
1.00098 

Exact value 1.00390 1.00098 

y= 1 y=8 

1.06066 

y=512 

1.05758 
1.06062 
1.06066 

1.00090 
1.00096 
1.00097 
1.00098 

and the second integral is the average of the speed dependent collision frequency Z(x) 
that occurs in kinetic theory given by 

Z(x) = (ePx + (&2)(2 & + l/G) erf(*)]l/j/Z 

where y is the mass ratio of the colliding species. 
The integral considered is, 

Z,(y) = -$y cx $Z(x) dx 

= (1 + l/y)“? 

The rate of convergence of the different numerical quadrature procedures is shown in 
Tables III and IV. In each of the cases considered, the integrals were transformed to a 
form compatible with the quadrature formula used. For Z,(y) shown in Table III, 
Gauss-Laguerre quadrature formulae converge rapidly for y+ 0 as would be 
expected and rather slowly for large y. The slow convergence is due to the occurrence 
of G in the integrand when the transformation to speed variable y = \/;; is made. 
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The new quadrature formula based on w(y) = emy2yp gives rapidly convergent results 
over the whole range of values of y. For y large, the rapid convergence is to be 
expected, but for small y the convergence is still extremely good. 

The results for Z,(y) are quite similar. For large mass ratios (y --) co), Z(x) - fi 
and the Laguerre formula is exact for N = 2. However, the new quadrature procedure, 
considered in this case with p = 2, converges very rapidly in this limit. For small 
mass ratios (y -+ 0), Z(x) is independent of x and the integrand in Z,(y) depends on 
fi. The convergence with the Laguerre quadrature formula is very slow whereas the 
result is exact for N= 2 with the newly derived quadrature. 

5. SOLUTION OF THE BOLTZMANN EQUATION 

In this section, the departure from equilibrium for a model reactive system of the 
type A + B -+ products is considered. A discussion of the details of the model was 
given in an earlier paper [ 181. In the present paper, species B is assumed to be 
present in large excess and at equilibrium, similar to the procedure adopted in a 
previous time dependent study 1241. The primary objective is to compare the previous 
results obtained with the polynomial method with a new discrete ordinate method. 

The energy distribution function of species A, P(x), is given by 

w> = p”(x) I 1 - 4(x) 13 

where x = mc*/2kT is the reduced translational energy, P”(x) = 2(x/n)“*e-” is the 
equilibrium Maxwellian energy distribution. The quantity 9(x) is the perturbation of 
the distribution function due to the reactive process and is given by a linear integral 
equation [ 181 of the form, 

I O3 K(x’, x) P”‘(x’) 4(x’) dx’ - Z(x) p”(x)#(x) 
0 

= -P(x) b(x) - j” p”(d) R(x’) dx’] , 
0 

(20) 

where K(x’, x) is the Wigner-Wilkins kernel 125) given by 

K(x’, x) = $.@*(n/x’)“*{erf(Q \/ST + R fi) + eX’-X erf(R fi + Q fi) 

k [erf(Qfi-R fl)+eX’-Xerf(R fi-Q\/ST;)]}, (21) 

where the + (-) sign refers to x’ > x (x’ < x). In Eq. (21) Q = +(y-“* + yl”), 
R = &-‘/* - ~“~1, Y = mB/mA, a = nd2(2kT/nm,)“2 and nd* is the total cross 
section for elastic A-B collisions. Although the notation is different, (20) is essen- 
tially Eq. (11) of Ref. [ 181. The form of the kernel K(x’, x) versus x and x’ depends 
on y and is characterized by a maximum at x=x’ and has a discontinuous first 
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derivative there. The quantity Z(x) in (20) is the energy dependent collision 
frequency defined by 

and given by [25 ], 

Z(x) = 
i 

m K(x, x’) dx’ 
0 

(22) 

Z(x) = uyel”[eCa + (fi/2){2(yx)“’ + (7x)-“*} erf(yx)“*]. (23) 

The quantity R(x) is the energy dependent reactive collision frequency defined by 

12615 
R(x) = (2kT/7~p)“~(M,M~x)-“~[G(-fi) - G(fi)J, (24) 

where 

G(G) = Ia, exp[-(x’ + m)*/M,] a*(,!?)~‘* dx’ 
-0 

(25) 

with M, = mA/(m, + ma), M, = 1 - M, and p = mAms/(mA + m,). In (25) a*(E) is 
the total reactive cross section as a function of the relative translational energy E, 
taken to be the line-of-centers form, that is, 

a*(E) = 0, E<E*, 

= rd;( 1 - E*/E), E>E*, 

where E* is the threshold energy and d, is a reactive hard sphere diameter. The form 
of R(x) is determined by the mass ratio y and the reduced threshold energy E* = 
E*/kT as discussed in detail elsewhere [26]. Of particular interest, is that for large y, 
P”(x) R(x) is essentially zero until near x = E* and then rises rapidly to a maximum 
followed by a near exponential decay over a short range in x. 

Solutions to Eq. (20) are sought and the departure from equilibrium is expressed in 
terms of the fractional decrease in the rate of reaction from the equilibrium value 
] 18 ], that is, in terms of 

q = jm P”(x) 4(x) R(x) dx 
I 
jm P”(x) R(x) dx. (26) 

0 0 

Equations (20) and (26) together with the associated definitions are the basic 
equations. 

There are two important features of Eq. (20) which must be carefully noted before 
solutions are sought. The first is that with the detailed balance condition 

K(x’, x) Pfx’) = K(x, x’) P(x) (27) 
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and with (22) one tinds that (20) can be rewritten in the form, 

jm zqx’, x) P(x’)[qqxy - #(x)1 dx’ = -p”(x) [R(x) - j: p”(x’)R(x’) dx’] . (28) 
0 

In view of (28), the discontinuity in the first derivative, or cusp, of K(x’, x) at x’ = x 
does not play an important role. This feature of the integral equation was not 
appreciated in a recent application [ 141. Some of the numerical methods described in 
the Appendix of this previous work were motivated by the existence of the discon- 
tinuity in the derivative of K and, are largely unnecessary as discussed later in this 
paper. 

A second important feature of (20) is that particle number is conserved, that is, 
integration of (20) over x gives zero on both sides of the equation. Consequently, 
(20) determines 4(x) only to within an additive constant. A unique solution is deter- 
mined by requiring the normalization [ 181, 

I O” P(x) t)(x) dx = 0, (29) 
0 

usually referred to as the auxiliary condition. 
The discrete ordinate method of solution of Eq. (20) involves the numerical 

integration over x’ in (20) with some suitable quadrature formula. Due to the 
occurrence of the Maxwellian weight function in (20) and the semi-infinite 
integration range a possible choice is the Gauss-Laguerre quadrature formula, that is, 

I 
,I e-“f(x) dx N 5 vif(xi), 

i=l 
(30) 

where xi are the roots of the Laguerre polynomial of degree N and vi are the 
corresponding weights. Application of this quadrature rule to (20) at each of the 
points x = xi, yields the set of linear equations 

+ VjK(Xj, Xi) #(Xj) P(Xj) - I P(X,) ’ VjK(Xj, Xi) 
,T, ,Tl 

= -p(xi) [ R(Xi) - 5 vjp(xj) R(x,)] 3 (31) 
j=l 

where Vi = vjexj. It is important to notice that although the exact analytic form of 
Z(x) is known, (Eq. (23)), it is evaluated numerically with (22). The purpose of this 
procedure is to ensure that particle conservation is conserved exactly despite the 
approximation inherent in the quadratures. If (31) is multiplied by Vi and summed 
over i and the detailed balance result 

P(x) Z(x) = j" P(x') K(x, x') dx' (32) 
0 
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is used, then both sides of (31) vanish identically. It is important to mention that this 
is essentially equivalent to the methods described in the Appendix of a recent paper 
[ 141. The somewhat involved manipulations described there simply ensure detailed 
balance and particle conservation. 

With particle conservation imposed exactly, the set of equations (3 1) is not linearly 
independent and an additional equation must be specified. This additional equation is 
the auxiliary condition, Eq. (29), which when written in quadrature form is, 

6 VjP(Xj) #(Xi) = 0. 
Jr1 

(33) 

Equation (33), together with the first N- 1 equations in (31) specifies #(xj). The 
quantity v is then given by 

~ = ~ Vj~(Xj) I R(Xj) 

I 
6 

Jr, Jr, 
VjP(Xj) R (Xj). (34) 

The quadrature procedure introduced in Section 2 was also employed in much the 
same manner. 

With the change of variable x = y2, one finds, in place of Eqs. (31), (33) and (34), 
that, 

2 2 WjK(Yj9 Y'>pM(yiZ)~(Yj2)Yj-2PM(yT)~(yi2) 5 WjK(.Jj2, Yf).Yj 
j=l j=l 

= -P(yf) [ R(yf)- 2 6 wjP(yj’)R(y;)yj ,+Fl 1 ) (35) 

c WjP(J$) g(y;)yj= 0 
,T, 

(36) 

and 

(37) 

In Eqs. (35~(37), Wj = wjeyj/y;. 
Tables V and VI show the rate of convergence of q as calculated with the discrete 

ordinate method. It is important to note that Eqs. (31) and (35) were solved for P”# 
rather than for 4 itself. The Gauss-Laguerre and the new quadrature procedures were 
employed in these calculations. The new quadrature procedure appears to be 
preferable and gives moderately rapid convergence to three significant figures. It is 
important to point out that for most practical applications, rapid convergence to 2-3 
significant figures would be suffkient. For the larger values of y and E* in Table VI 
the rate of convergence has slowed considerably. This slow convergence is easily 
understood when one considers the details of the calculation of 1;1. In Fig. la, the 



324 B. SHIZGAL 

TABLE V 

Convergence of r,r; Comparison of Discrete Ordinate Methods” 

N &* = 2 &* = 5 F* =8 

New New New 
quadrature Laguerre quadrature Laguerre quadrature Laguerrc 

5 
10 
15 
25 
40 

Polynomial 
methodc 

0.2169b 0.2346 0.065 13 0.07020 0.01474 0.01571 
0.2131 0.2221 0.06300 0.0679 1 0.01404 0.01683 
0.2126 0.2195 0.06268 0.06737 0.01392 0.01715 
0.2123 0.2167 0.06255 0.0660 1 0.01387 0.01656 
0.2122 0.2181 0.0625 1 0.06812 0.01385 0.01889 

0.2122 0.06249 0.01385 

“/= 1, d=d 
b Results withR;he new quadrature procedure, p = 2. 
’ From 5-10 terms in the polynomial expansion were used. 

TABLE VI 

Convergence of rl; Comparison of discrete ordinate methods’ 

N &* = 5 &* = 10 e*= 15 

New New New 
quadrature Laguerre quadrature Laguerre quadrature Laguerre 

5 
10 
15 
25 
40 
60 

Polynomial 
methodb 

1.5964 1.6262 0.04927 0.7299 
0.8892 0.8836 0.2585 0.3179 0.1053 0.08442 
0.8330 0.8417 0.2049 0.2110 0.07703 0.09823 
0.8167 0.8245 0.2079 0.2103 0.0847 1 0.08584 
0.8111 0.8170 0.2052 0.208 1 0.0829 1 0.08501 
0.8096 0.8129 0.2045 0.2062 0.08248 0.08348 

0.8087 0.204 1 0.08224 

“y=lO, d=d R' 
b From 8-l 2 terms in the polynomial expansion were used. 

graph of p#R (see (26)) is shown versus y. The contribution to q for y and E* large 
[26], comes from large values of y (the maximum in p occurs at y = 1) and over a 
small range of reduced speeds. With a total of 60 quadrature points, only 10 points, 
shown explicitly in Fig. la, are used directly in the calculation of q. An increase in 
the total number of quadrature points does not substantially alter the actual number 
that fall within this important interval. 
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+J. 0.6- 
cc 

I 
a 04 

FIG. 1. Variation of i”“R$ versus y. (a) New weights and points, N = 60, s = 1.0; (b) N = 100, 
s = 0.35; (c) two interval method, N, = 10, N, = 30, yrnax = 5.5 (see text). pRq4 in arbitrary units; 
‘/ = 10, &* = 15. 

An improvement in these results can be obtained by suitably scaling the points in 
the quadrature, that is, by a change of variable z = y/s such that 

(38) 

With s < 1, the quadrature points are scaled to smaller values. The variation of q 
with the scale factor s for y = 10 and E* = 15, and several different orders N, is 
shown in Table VII. Although no detailed error analysis has been carried out, it 
appears that the best choice for s is the value for which the variation of q with s is a 
minimum. For N= 80 and 100 and s z 1, the large values ofy, lead to an overflow in 

SIN 40 

TABLE VII 

Variation with the Scale Factor” 

60 80 100 

1.00 
0.90 
0.80 
0.70 
0.60 
0.50 
0.40 
0.38 
0.36 
0.34 
0.32 
0.30 

0.082908 
0.082767 
0.082650 
0.082563 
0.082512 
0.082436 
0.020198 
0.00428 
0.00046 
0.00003 

0.082482 
0.082427 
0.082381 
0.082345 
0.0823 18 
0.082303 
0.082036 
0.080435 
0.072560 
0.048254 
0.015739 
0.001854 

0.08233 1 - 
0.082309 0.082280 
0.08229 1 0.082270 
0.082277 0.082262 
0.082267 0.082256 
0.082263 0.082253 
0.08226 1 0.082253 
0.0822 15 0.082253 
0.081730 0.082250 
0.078077 0.082191 
0.060416 0.08 1430 

’ y = IO, E* = 15, d = d,; polynomial result 0.082244. 
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the calculation of the kernel so that values of r] are not shown. The result with 
N = 100 and s ~0.38 agrees remarkably well with the result with the expansion 
method. The small discrepancy is most probably due to numerical round-off errors in 
the polynomial method. In any event, three figure accuracy is all that is required in 
practical applications. The graph of pMR# versus y for N = 100 and s = 0.35 is 
shown in Fig. lb and illustrates the improvement in the final result with the 
introduction of 20 quadrature points in the important reduced speed interval. 

In view of the bebaviour shown in Figs. la and b, it is clear that accurate solutions 
can be calculated if the quadrature points are concentrated in the region of speed 
space which contributes most to n. Although the solution 4 is required for all y, 
perhaps fewer points are required in the interval below some value J = y,, where 
P““# x 0. With this in mind, additional calculations were carried out with the division 
of the semi-infinite interval into two intervals [ 0, y,] and [ y,, co], where y, was 

TABLE VIII 

Convergence of q; Two Interval Method 

N, N,” y = 10, &* = 15 y = 20, &* = 20 y = 40, &* = 25 

5 5 0.023190 0.02590 
10 0.081831 0.14325 
15 0.080677 0.13818 
20 0.080482 0.13696 
30 0.080413 0.13624 
40 0.080405 0.13602 

10 

15 

20 

5 0.020469 0.09509 - 
10 0.083829 0.10784 0.15539 
15 0.082585 0.10578 0.15221 
20 0.082361 0.10546 0.15146 
30 0.082272 0.10533 0.15115 
40 0.082256 0.10531 0.15109 

5 0.020470 0.09505 - 
10 0.083827 0.10785 0.15335 
15 0.082583 0.10579 0.15060 
20 0.082359 0.10546 0.14995 
30 0.082269 0.10533 0.14970 
40 0.082254 0.10531 0.14965 

5 0.020470 0.09506 - 
10 0.083826 0.10785 0.15339 
15 0.082582 0.10578 0.15062 
20 0.082358 0.10546 0.14997 
30 0.082269 0.10533 0.14971 
40 0.082253 0.10531 0.14966 

Polynomial result 0.082244 0.10527 0.14926 

- 
- 
- 
- 
- 

ON, and N, are the number of quadrature points in the first and second interval, respectively; see text. 
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defined (rather arbitrarily) such that PR is 1/20th of the maximum value. The new 
quadrature procedure was employed in the second interval with a change of variable 
as given by, 

jmf(y)dJ'= j"fh,h%i,~/d.i%@~. 
yo 0 

A scale change was also employed (see (38)) so that there were no quadrature points 
beyond some large value, y,,,. A Gauss-Legendre quadrature was employed for the 
first interval with an appropriate variable change, that is, 

jyof.(y) d. = $ j’ .OY,(Y + 1)/2J dy. 
0 -1 

The convergence of 7 versus the number of quadrature points in the two intervals 
is shown in Table VIII. It is clear that 10 points in the first interval and 20-30 points 
in the second is all that is required to give convergence to three significant figures. 
The entries that are not shown had too few points and meaningful results were not 
obtained. Results of calculations with additional points in both intervals and not 
shown in Table VIII agreed with the values shown for N, = 20 and N, = 40, so that 
these have converged. What is of interest is that reasonable results can be obtained 
with a small number (20-40) of quadrature points. Moreover, a large fraction of 
these points do fall within the important speed interval, as shown in Fig. Ic. 

6. SUMMARY 

The present work has demonstrated the usefulness of a discrete ordinate method 
based on a new quadrature formula in the solution of the chemical kinetic Boltzmann 
equation. It is anticipated that this method of solution will prove more efficient than 
traditional polynomial expansion methods, particularly in applications to realistic 
systems for which input data such as cross sections are available only in numerical 
form. Applications to the chemical kinetics of hot atom systems have been described 
elsewhere [27]. 

It is important to note that the discontinuity in the derivative of the kernel does not 
play an important role. In particular. although (22) can serve as a useful check of the 
quadrature procedure employed, quite accurate results are obtained even though the 
numerical integration over K (see (22)) is accurate to only a few percent. This is so 
provided detailed balance and particle conservation is ensured, as in (35). Consistent 
with particle conservation is the normalization condition which is satisfied exactly as 
in (33) and (36). 

Although the final results of earlier papers [ 14-161 are correct, some of the 
numerical methods introduced there are not necessary. In particular, the interpolation 

581/41/2-l 
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described in the Appendix of [ 141 motivated by the presence of the cusp in the kernel 
is not required. Also the discussion in [ 161 with regard to the difficulty of satisfying 
the normalization condition is somewhat misleading. The normalization condition 
can always be imposed exactly as an additional constraint. The important point is the 
realization that particle conservation must be ensured, and this requirement is easily 
met as in the present paper. 
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